技术领域
本发明涉及新能源技术领域,尤其涉及一种太阳能吸热陶瓷材料及其制备方法。
背景技术
新能源是传统能源之外的各种能源形式,包括太阳能、地热能、海洋能、风能和核聚变能等。太阳能是取之不尽用之不竭的可再生资源,开发和利用太阳能是实现能源供应多元化、保证能源安全的重要途径之一。近年来,在节能减排的政策引导和要求下,我国建筑中太阳能光热技术的应用显著增加,对于太阳能建筑一体化的要求也越来越高。
塔式太阳能热发电系统由于聚光比高(200-100KW/m2)、热力循环温度高、热损耗小、系统简单且效率高的特点得到世界各国的重视,是目前各国都在大力研究的先进的大规模太阳能热发电技术,作为塔式太阳能热发电核心的空气吸热器,其中的高温吸热体材料担负着接收太阳聚光能量,以及吸热换热的重要作用,影响着整个热发电系统的稳定性及效率的高低。
但是,由于塔式吸热器聚光能流密度不均匀性和不稳定性形成的吸热体局部热斑造成材料热应力破坏、空气流动稳定性差以及耐久性不高等问题,因而需迫切的开发具有抗高温氧化性好、抗热震性好、具有三维或者二维的连通结构、高比表面以及高热导率的新型吸热体材料。
发明内容
基于背景技术存在的技术问题,本发明提出了一种太阳能吸热陶瓷材料及其制备方法。
一种太阳能吸热陶瓷材料,包括以下重量份的组分:氮化硅15~40份,氮化硼15~40份,硅化钛5~15份,碳化钽5~15份,氧化铬5~12份,氧化铝5~12份,硅酸钠2~7份,氧化硼2~5份,一氧化锰2~3份。
优选的,包括以下重量份的组分:氮化硅18~35份,氮化硼20~30份,硅化钛8~12份,碳化钽6~10份,氧化铬7~10份,氧化铝6~9份,硅酸钠3~6份,氧化硼3~4份,一氧化锰2~3份。
进一步优选的,包括以下重量份的组分:氮化硅30份,氮化硼25份,硅化钛10份,碳化钽9份,氧化铬8份,氧化铝7份,硅酸钠5份,氧化硼3份,一氧化锰2份。
优选的,各组分均为平均粒径1~100nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。
优选的,所述聚氨酯泡沫为液态。
优选的,具体步骤如下:
(1)称取配方量的各组分,混合,球磨,得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:20~35混合并搅拌10~30分钟,然后进行超声处理5~8小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至150~300℃,在惰性气体保护下保温1~6小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在惰性气体或真空中加热至1000~1200℃,30~50MPa条件下烧结2~3小时,继续加热至1400~1600℃,30~50MPa条件下烧结2~3小时,然后降温至600~700℃保温3~5小时,即得。
进一步优选的,步骤(1)的具体方法是:以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为120~140r/min的条件下球磨混合12~16小时得浆料。
进一步优选的,步骤(3)和(4)中的惰性气体为氦气或氩气。
本方案相比于传统方案的有益之处在于:本发明采用有机泡沫浸渍工艺,制备抗高温氧化性好、抗热震性好、具有三维网状结构、高比表面和高热导率的吸热陶瓷材料,特别适用于塔式太阳能热发电吸热体。本发明的太阳能吸热陶瓷材料气孔均匀,气孔率为95%以上,孔径在2mm左右,孔肋骨架较粗壮,有利于泡沫陶瓷强度提高;烧成后泡沫陶瓷主晶相为氮化硅和氮化硼,抗压强度为0.35MPa以上,30次热震后抗压强度在0.30MPa以上,具有抗高温氧化性好、抗热震性好、具有三维网状结构、高比表面和高热导率等特点,有效解决了当前太阳能吸热体材料抗高温氧化差以及抗热震性能差等问题。
具体实施方式
实施例1:
一种太阳能吸热陶瓷材料,包括以下组分:氮化硅15kg,氮化硼15kg,硅化钛5kg,碳化钽5kg,氧化铬5kg,氧化铝5kg,硅酸钠2kg,氧化硼2kg,一氧化锰2kg。
其中,各组分均为平均粒径1nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。具体步骤如下:
(1)称取配方量的各组分,以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为120r/min的条件下球磨混合12小时得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:20混合并搅拌10分钟,然后进行超声处理5小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至150℃,在氦气保护下保温1小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在氦气中加热至1000℃,30MPa条件下烧结2小时,继续加热至1400℃,30MPa条件下烧结2小时,然后降温至600℃保温3小时,即得。
实施例2:
一种太阳能吸热陶瓷材料,包括以下组分:氮化硅40kg,氮化硼40kg,硅化钛15kg,碳化钽15kg,氧化铬12kg,氧化铝12kg,硅酸钠7kg,氧化硼5kg,一氧化锰3kg。
其中,各组分均为平均粒径100nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。具体步骤如下:
(1)称取配方量的各组分,以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为140r/min的条件下球磨混合16小时得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:35混合并搅拌30分钟,然后进行超声处理8小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至300℃,在氩气保护下保温6小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在真空中加热至1200℃,50MPa条件下烧结3小时,继续加热至1600℃,50MPa条件下烧结3小时,然后降温至700℃保温5小时,即得。
实施例3:
一种太阳能吸热陶瓷材料,包括以下组分:氮化硅18kg,氮化硼20kg,硅化钛8kg,碳化钽6kg,氧化铬7kg,氧化铝6kg,硅酸钠3kg,氧化硼3kg,一氧化锰2kg。
其中,各组分均为平均粒径1nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。具体步骤如下:
(1)称取配方量的各组分,以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为140r/min的条件下球磨混合12小时得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:35混合并搅拌10分钟,然后进行超声处理8小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至150℃,在氩气保护下保温6小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在氩气中加热至1000℃,50MPa条件下烧结2小时,继续加热至1600℃,30MPa条件下烧结3小时,然后降温至600℃保温5小时,即得。
实施例4:
一种太阳能吸热陶瓷材料,包括以下组分:氮化硅35kg,氮化硼30kg,硅化钛12kg,碳化钽10kg,氧化铬10kg,氧化铝9kg,硅酸钠6kg,氧化硼4kg,一氧化锰3kg。
其中,各组分均为平均粒径100nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。具体步骤如下:
(1)称取配方量的各组分,以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为120r/min的条件下球磨混合16小时得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:20混合并搅拌30分钟,然后进行超声处理5小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至300℃,在氩气保护下保温1小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在真空中加热至1200℃,30MPa条件下烧结3小时,继续加热至1400℃,50MPa条件下烧结2小时,然后降温至700℃保温3小时,即得。
实施例5:
一种太阳能吸热陶瓷材料,包括以下组分:氮化硅30kg,氮化硼25kg,硅化钛10kg,碳化钽9kg,氧化铬8kg,氧化铝7kg,硅酸钠5kg,氧化硼3kg,一氧化锰2kg。
其中,各组分均为平均粒径50nm的粉末。
上述一种太阳能吸热陶瓷材料的制备方法,以氮化硅和氮化硼为基材,以硅化钛、碳化钽、氧化铬、氧化铝、硅酸钠、氧化硼以及一氧化锰为添加剂合成耐高温结合相,以聚氨酯泡沫为前驱体,采用有机泡沫浸渍工艺制备陶瓷材料。具体步骤如下:
(1)称取配方量的各组分,以无水乙醇为分散剂,ZrO2球为球磨介质,采用滚筒式球磨机在球磨转速为130r/min的条件下球磨混合14小时得浆料;
(2)将步骤(1)中的浆料与先驱体聚氨酯泡沫按照重量比为1:30混合并搅拌20分钟,然后进行超声处理6小时充分混合均匀;
(3)将步骤(2)所得混合物置于密闭容器中,升温至200℃,在氦气保护下保温4小时至交联固化,然后真空烘干;
(4)将步骤(3)烘干后的混合物置于真空热压烧结炉中,在氦气中加热至1100℃,40MPa条件下烧结2小时,继续加热至1500℃,40MPa条件下烧结2小时,然后降温至650℃保温4小时,即得。
试验例
检测并统计实施例1~5所得陶瓷材料的气孔率,平均孔径,抗压强度和30次热震后抗压强度,结果见表1。
由表1可知,本发明的太阳能吸热陶瓷材料气孔均匀,气孔率为95%以上,孔径在2mm左右,抗压强度为0.35MPa以上,30次热震后抗压强度在0.30MPa以上,抗热震性好。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。